
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/345260649

PLRC*: A piecewise linear regression complex for approximating optimal robot

motion

Conference Paper · October 2020

DOI: 10.1109/IROS45743.2020.9341312

CITATIONS

2
READS

110

4 authors:

Some of the authors of this publication are also working on these related projects:

AI and Robotics View project

Luyang Zhao

Dartmouth College

9 PUBLICATIONS 9 CITATIONS

SEE PROFILE

Josiah Putman

Dartmouth College

3 PUBLICATIONS 2 CITATIONS

SEE PROFILE

Weifu Wang

University at Albany, The State University of New York

28 PUBLICATIONS 196 CITATIONS

SEE PROFILE

Devin J. Balkcom

Dartmouth College

82 PUBLICATIONS 1,247 CITATIONS

SEE PROFILE

All content following this page was uploaded by Luyang Zhao on 12 November 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/345260649_PLRC_A_piecewise_linear_regression_complex_for_approximating_optimal_robot_motion?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/345260649_PLRC_A_piecewise_linear_regression_complex_for_approximating_optimal_robot_motion?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/AI-and-Robotics?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luyang-Zhao?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luyang-Zhao?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Geisel-School-of-Medicine?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luyang-Zhao?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Josiah-Putman?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Josiah-Putman?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Geisel-School-of-Medicine?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Josiah-Putman?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weifu-Wang-2?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weifu-Wang-2?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_at_Albany_The_State_University_of_New_York?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weifu-Wang-2?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Devin-Balkcom?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Devin-Balkcom?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Geisel-School-of-Medicine?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Devin-Balkcom?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luyang-Zhao?enrichId=rgreq-43a5636b2fb6d72d48398d2c83a4efd9-XXX&enrichSource=Y292ZXJQYWdlOzM0NTI2MDY0OTtBUzo5NTcwNzEwNTQ4ODQ4NjZAMTYwNTE5NDkyOTcyMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

PLRC*: A piecewise linear regression complex
for approximating optimal robot motion

Luyang Zhao Josiah Putman Weifu Wang Devin Balkcom

Abstract— Discrete graphs are commonly used to approx-
imately represent configuration spaces used in robot motion
planning. This paper explores a representation in which the
costs of crossing local regions of the configuration space are
represented using piecewise linear regression (PLR). We explore
a few simple motion planning problems, and show that for these
problems, the memory required to store the representation
compares favorably to that required for standard discrete
vertex-and-edge models, while preserving the quality of paths
returned from searches.

I. INTRODUCTION

The development of the PRM* and RRT* and related algo-
rithms has shown that in principle, sampling-based planners
can return trajectories that approach the minimum cost for
some metric as the number of samples approaches infinite.
But how much memory and computation time are really
needed to adequately approximate optimal motion? Even in
an empty space, we expect a PRM* graph to require dense
sampling, since samples must be near the optimal path; the
present work attempts to exploit smoothness of the metric to
build approximations that do not need such dense sampling.

This paper presents a data structure, the regression com-
plex (RC), for summarizing approximately optimal motion
in robot configuration spaces. While the approach does not
escape the curse of dimensionality, it does take advantage of
smoothness in the configuration-space metric to build cells
that summarize information that might otherwise require
many samples. Regression techniques are used to express
the distance between boundary points of each cell, smoothly
approximating the cost function that would otherwise be
implicitly represented using a large number of edges between
samples within each cell. Because cells are large, the true
cost of a path can be estimated quickly in a query phase.

Memory-efficient data structures for motion planning are
important. As cloud computing and faster processors make
computation more available, memory is often the bottleneck
in motion planning. Consider any robot supported by cloud
infrastructure, which needs the brunt of its motion planning
computed remotely. Large data structures like PRMs can
be constructed using offline preprocessing, but to make the
information available to robots locally requires storage or
transmission across a network. The present work provides a
light-weight data structure that can be constructed remotely,
transmitted once, and used by the robot for multiple planning
queries. The approach uses a divide-and-conquer strategy,
allowing separate regions of the search space to be processed
sequentially (to reduce memory) or in parallel (for speed).
The parallelizability of the construction procedure also has
promising applications using distributed computing.

A. A simple example

(a) 2D environment

(b) Cell distance functions

(c) Error between prediction and ground truth

(1) Complex with distance calculated from visibility graph

Consider the trivial example of a planar space for a point
robot with polygonal obstacles in Figure 1a. We have broken
the space into a 3 × 3 grid of square cells. We parameterize
the boundary S of each cell with a real number in the range
[0,4). Let the cost function between points on the boundary
be fi ∶ S ×S ↦ R, where i is the index of the cell. Figure 1b
shows each of the boundary cost functions for the nine cells.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6681

These functions are not defined everywhere, since some paths
may not exist; these regions are shown in gray. The red dots
in Figure 1a shows points along a path extracted from the
distance functions using techniques from the paper, and the
blue path shows a refinement of the path that avoids obstacles
within the cells.

Figure 1b is not a regression complex, but was generated
by sampling the visibility graph [14], which can be used to
find optimal paths in planar environments with polygonal
obstacles and a local Euclidean metric. The paper will
describe how such distance functions may be approximated
using regression techniques, how paths may be extracted
using the data structure, and evaluates the usefulness of the
data structure. Figure 1c shows the error between approxi-
mated distances and ground truth, where the ground truth is
computed using a visibility graph. The RMSE is 0.0001658
in this case.

B. Weaknesses and limitations

This paper makes the same strong assumptions as PRM*:
that the configuration space is fully known, and that there is a
local planner that can connect pairs of nearby configurations
optimally without too much computational expense.

The present work is preliminary, and provides at best
an exploration of an alternative to popular sample-and-edge
discretizations of configuration spaces. How should these
regression complices be constructed efficiently? How should
they best be searched for a path? Once a path is found, how
can it be refined to avoid obstacles within each cell? We
don’t know. For each of these phases of construction, query,
and refinement, we have explored only a first approach. For
example, in the construction phase, we use a PRM* to mea-
sure the underlying cell-crossing metric that the regressions
approximate, though we are certain that a PRM* is costly
and unwieldy for the purpose. We focus on a piecewise
linear regression technique for transparency, but can imagine
that other techniques (such as neural networks) might be
as or more effective. Similarly, in the query phase, we
discretize cell-boundaries and search, though the existence
of a smooth approximation of the metric strongly suggests
an optimization approach like that used by Field D* [10].

Experimental work, though promising, is limited so far to
examples in a few dimensions, due in part to the computa-
tional cost of sampling the value functions exhaustively.

II. RELATED WORK

Work in the present paper attempts to pre-compute and
compactly represent cost and connectivity information about
robot state or configuration spaces for motion planning,
dividing search into learning and query phases, just as
sampling-based [12] approaches do. The PRM* [11] al-
gorithm and its relatives have shown that as samples are
placed densely enough, with enough connecting edges and an
optimal local planner, sampling-based planning methods can
approximate optimal motion with high probability. However,
this approximation comes with a memory cost – in an exam-
ple in [11], the PRM* algorithm continues to meaningfully

improve upon the path cost while 50000 samples are placed,
in a planar environment for a point robot with no obstacles.
We can imagine why: a sampling-based planner must place
samples quite finely within a tube surrounding a minimum-
cost trajectory to approximate that trajectory, and PRM*
must effectively do so for every potential pair of start and
goal configurations.

Work on graph spanners [15, 13, 22] has shown that many
of the edges in such graphs can be deleted without too much
harm to the path quality. Our own prior work [1] finds formal
upper bounds on the complexity of approximating optimal
trajectories through cell decomposition, but the memory
costs, while finite and computable for any given space, are
high.

Approaches that remove or avoid placing vertices, such as
the Visibility PRM [20] and certificate methods [4, 8], must
sacrifice optimality. Similarly, trees or graphs of controllers
(e.g. LQR trees [21]) may cover large regions of space nicely,
but are focused on robust control rather than optimal path
cost. In [6], a metric for swept volume is learned, and serves
as an effective and admissible heuristic for planning.

Smooth approximations of value functions are quite com-
mon in reinforcement learning, but have also made some
appearance in robot motion planning. For example, work
by Rayner, Bowling, and Sturtevant [18], remaps a motion
problem with obstacles in such a way that Euclidean distance
in the warped map serves as a heuristic for the original
problem. Recent work by Faust et al. [9] explores a combined
sampling and reinforcement-learning approach to long-range
planning, addressing some of the same computational issues
as the present paper, but with less focus on optimal motion.
Network embeddings also attempt to find a function that ex-
presses distance between vertices in a network; [7] provides
a recent survey.

Neural networks have been used to learn value functions
derived from optimal control; one of the first examples
is [16]. The present work uses a simple piecewise linear
regression in the interest of transparency, and also attempts to
represent an all-pairs problem, rather than a one-shot planner
to a single goal configuration. Distance metric approximation
for RRTs using supervised learning [3] has been used for
tasks such as pendulum swing-up problems, but is likewise
focused on one-shot planning.

Our previous work on Locally Linear Distance Maps
(LLDM) [17] explored using piecewise linear regressions
of the distance-to-goal as a heuristic for existing motion
planning algorithms. Instead of using the linear regressions as
a heuristic, the regression complex uses the same regression
method to approximate boundary-to-boundary costs in each
cell of the complex.

III. THE REGRESSION COMPLEX

In this section, we describe an approach to constructing
and querying the regression complex (RC) data structure
using a piecewise linear regression to approximate cell-
crossing costs.

6682

(a) Metric given by local
planner.

(b) One point in collision.

(c) Regression used to
approximate metric.

(d) Boundary points in separate
components.

(2) Four different relationships among boundary points

We will need some notation. Let Qf ⊆ Q denote the free
regions of Q. Let ∆ ∶ Q2

f ↦ {0,1} be a local planner that
determines if two states q1, q2 ∈ Qf are connectable. If the
states are connectable, we assume that the local planner is
also capable of providing the cost of an optimal path between
q1 and q2. Let d ∶ Q2 ↦ R≥0 denote the distance metric
between pairs of states.

A. PLRC*: Construction phase

The construction phase decomposes Q into a set of cells
C, where each cell C ∈ C is an n-dimensional hypercube. For
each cell, the basic approach is to sample distances between
pairs of points along the boundary of the cell, and then to
use this data to build a regression.

Let B(C) represent the boundary of a cell C. We associate
with each cell C a regression RC ∶ B(C) × B(C) ↦ R≥0
that maps pairs of points on its boundary to the distance
between them. A classifier KC ∶ B(C) × B(C) ↦ {0,1}
is also constructed to represent the connectivity of pairs of
boundary points.

We enumerate four cases that the relationship between a
pair of points on the boundaries of a cell may fall into, shown
in Figure 2; we handle each of these cases differently in the
representation of the regression complex data structure.

Two points on the boundary of a cell are connectable by
a path that remains within a cell (2a, 2c), or they are not
(2b, 2d). Although one could imagine the path cost between
unconnectable points as infinite, the resulting discontinuities
in the value function are problematic for a smooth regression
representation.

We use two approaches to mask out unconnected configu-
rations from the regression. First, we use a collision detector
to find if either boundary point is itself in collision with
an obstacle. If so, we discard the sample. Second, if the
boundary points themselves are collision-free, but the local

planner fails to find a path connecting the points without
leaving the cell, we record this fact using a classifier, the
implementation of which we discuss below.

Restriction of the local planner to find only paths com-
pletely constrained to the current cell is an important design
decision for the approach, and means that the regression
does not encode the true value function between each pair
of boundary points. Instead, some search over adjacent cells
may be needed to connect two points on the boundary over a
cell, and a cell may need to be crossed several times by a path
found in the query phase. Allowing this to happen separates
the problem of determining cell size from the geometry of
the obstacles, allowing much larger cells than those used
in typically cell-approximation methods for motion planning
(e.g. [1, 2]).

We also introduce an optimization to exploit the fact that
for paths that do not contact obstacles (Figure 2a), the local
planner already provides an accurate local metric. In some
cases, the local planner provides a useful estimate even
if a path gently grazes an obstacle. Therefore, rather than
representing the cell-crossing distance function directly, we
represent the difference between the cell-crossing distance
function and the metric provided by the local planner. Thus,
if the local planner is accurate over some region without
obstacles, the regression needs only to store the value 0 over
that region.

The training data used for the cost regression and the
connectivity classifier might be found in various ways. For
simplicity, and for simplicity of comparison with standard
PRM* we make use of a local PRM* inside the cell.

B. Piecewise linear regression

The Piecewise Linear Regression (PLR) used to approxi-
mate cell-crossing distance functions is discussed in greater
detail in a technical report [17], along with proofs of conver-
gence and use cases. The technique is straightforward. We
would like to approximate a function from Rn ↦ R. The
PLR subdivides the space into cells using a Binary Space
Partition (BSP), sampling the function as it goes, and using
the samples to compute a linear approximation in each cell
of the BSP. The error may then be estimated using further
samples; if needed, the BSP is refined further. We used the
same structure with a threshold value of 0.5 as the cell’s
connectivity classifier KC .

All experiments presented in this paper use the piecewise
linear approach to regression and classification, since this
approach is quite transparent, simple to implement, requires
little tuning, and provides some guarantees that at least the
samples selected during training will be fit well, giving us
some confidence in the overall approach.

However, the regression complex framework is modular
and any general-purpose regression technique can be applied;
we are hopeful that for higher dimensions, other regression
techniques will prove effective. We ran preliminary tests
using both feed-forward deep neural networks and XG-
Boost [5]; results were useable but somewhat less robust in
terms of quality of fit for similar memory costs, perhaps due

6683

to our lack of insight into how to best design the architecture
and tune the parameters.

C. PLRC*: Query Phase

Given a start configuration s ∈ Qf and a goal configuration
t ∈ Qf , a query is performed using a simple graph search
with discretization along the boundaries, as described below:

1) Boundary graph construction: We construct a
weighted graph Gb = (Vb,Eb,wb), whose vertices Vb are
samples in Qf along the boundary of every cell C ∈ C. The
edges Eb are pairs of points that are in the same cell C and
are classified as connectable by KC , i.e. Eb = {(q1, q2) s.t.
q1, q2 ∈ C,KC(q1, q2) = 1 for some C}. The weight map
wb for each edge is calculated using the regressor, namely
wb(q1, q2) = RC(q1, q2). We then run A* search over Gb
to return the path P0, the unrefined path whose waypoints
represent the points that the final path P needs to go through.

2) Path refinement: One can imagine many ways of
reconstructing P from P0. A PRM* could be constructed
within each cell that P0 passes through, and the path be-
tween each waypoint could be calculated using A* search.
However, this approach requires constructing an incredibly
dense PRM*, which is costly in terms of memory and
defeats the purpose of using this algorithm. Alternatively,
an optimizer could be used to place intermediate points
between each waypoint such that the path between the
added points is collision-free and the cost is minimized.
Our approach uses the optimizer, and incrementally starts by
attempting the connection with a single intermediate point.
If the connection fails, an additional point is added and the
procedure continues until the points are connected. This is
guaranteed to terminate because the points on the graph were
classified as connectable by their cell’s classifier KC .

IV. EXPERIMENTS

This section presents the results of several computational
experiments in which PLRC data structures are constructed
and queried. For comparison, we also construct and query
PRM* graphs directly.

To measure the memory cost of each approach, we com-
pute the number of floating points needed to store each data
structure; this is a rough but perhaps useful estimate. For
the PLRC, the memory cost includes the cost of both the
regressor and the classifier. The cost of each is the sum of the
number of numbers needed to store the parameters for each
linear regression, the bounds of each cell in the BSP, and the
number of cells needed, based on the depth of the BSP. The
memory cost of PRM* is just the memory cost of storing
the vertices and graph, which is N ∗D +N ∗ k ∗ 3/2, where
N is the number of sample points used in the construction
phase, and k equal to log(2,N).

A. Planar point robot among polygonal obstacles

We performed our first experiments for a planar point
robot with q = (x, y) ∈ R2. The robot moves amongst
polygonal obstacles from a start configuration to a goal
configuration.

We tested several different environments, and present
results (Table I) for two of the more interesting, which we
name world-doors (Figure 3) and world-maze (Figure 4).
We used different numbers of cells, ranging from 4 to 32
(PLRC*-4 to PLRC*-32).

From Table I, we can see that the memory required to
store the PLRC data structure is about 20 times less than
that required for the PRM* for these examples, and query of
the PLRC returns a slightly more accurate approximation of
the path cost. (The optimal path distance of maze-doors is
5.859918264 and of maze-world is 3.911704702 calculated
from visibility graph[14].)

(a) PLRC*-16 with optimizer
for reconstruction

(b) PLRC*-16 with PRM* for
reconstruction

(c) Connection relationship
between boundary points

(d) Path from PRM*

(3) World-maze: PRM* paths, and PLRC*-16 with differ-
ent refinement techniques

Surprisingly, when the number of cells increases, PLRC*
seems to require less memory. When we divide the regions
into more small cells, the number of sample points become
smaller and the distances of those points has lower variance;
the piecewise linear regression subdivides these simpler
smaller cells less.

The query phase of PLRC returns only the path cost and
some points where the approximation of the optimal path
intersects with cell boundaries. To find a higher-resolution
path that avoids obstacles within cells, some refinement step
is required, as described above.

Figure 3a and Figure 4a show the path after refinement by
optimization techniques and Figure 3b and Figure 4b show
a path after refinement using a local PRM* built within
each cell along the approximately optimal path. We note
that the optimizer returns very good paths indeed, but the
comparison to PRM* is not quite fair, since PRM* does not
execute a refinement step. Figure 3d and Figure 4d shows the
path computed by PRM* directly. Figure 3c and Figure 4c
shows the connectivity of boundary points, as captured by
the classifier.

6684

Environment Algorithm Memory cost
(FP)

Unrefined cost Query time
(sec)

Refinement
method

Path cost Refinement
time

WORLD-DOORS

PRM* 215000 - 0.09644 - 6.14225 -

PLRC*-4 9184 6.04741 0.01806
Optimizer 5.88847 161.16488

PRM* 6.10913 41.43030

PLRC*-16 4620 6.01461 0.00956
Optimizer 5.89986 14.75135

PRM* 6.07112 18.71936

PLRC*-32 3968 6.04388 0.00933
Optimizer 5.94593 12.99612

PRM* 6.10998 12.47269

WORLD-MAZE

PRM* 215000 - 0.03401 - 4.09641 -

PLRC*-4 21224 3.99711 0.00449
Optimizer 3.97747 1.65003

PRM* 4.07569 19.37482

PLRC*-16 5058 3.99963 0.00288
Optimizer 3.94168 2.61319

PRM* 4.07431 7.29743

PLRC*-32 4874 3.97164 0.00809
Optimizer 3.93096 15.92245

PRM* 4.06221 9.44786

(I) Comparison between PRM* and PLRC* in different number of cells

Environment Algorithm Memory cost
(FP)

Unrefined cost Query time
(sec)

Refinement
method

Path cost Refinement
time

3D Arm in
WORLD2

PRM* 210875 - 0.11388 - 5.44542 -
PLRC*-8 21554 5.23471 0.04129 PRM* 5.40983 22.37812

RS Car in
WORLD-DOORS2

PRM* 180000 - 0.083801 - 5.77792 -
PLRC*-8 25122 5.48602 0.035062 PRM* 5.69049 33.10321

(II) Comparison between PRM* and PLRC* for 3D arm and RS car

(a) PLRC*-16 with optimizer
for reconstruction

(b) PLRC*-16 with PRM* for
reconstruction

(c) Connection relationship
between boundary points

(d) Path from PRM*

(4) World-doors: finding path with prm* and PLRC*-16
with different reconstruction techniques

B. n-joint revolute arm

Our next experiments were performed on an n-joint rev-
olute arm whose configuration can be described by q =
(θ1, θ2, . . . , θn). For simplicity, we add a constraint θi ∈
[−π,π] ∀i ∈ [n].

We define the distance metric d(q1, q2) =

(5) 3-joint revolute arm path obtained by PLRC* from
(0,0,0) (blue) to (π

2
,0,0) (red) in WORLD2. Total path cost

5.40983, compared to 5.44542 for PRM*.

maxi∈[n] ∣q2[i] − q1[i]∣, where q[i] denotes the ith parameter
of q. Note that if we assume that each joint has the same
bound on its angular velocity, the above metric represents
the time cost of going from configuration q1 to q2. The
first row of Table II shows the comparison results of 3R
arms from PRM* and PLRC*-8, where the memory cost of
PRM* is 23 times of PLRC*-8 while the path accuracy of
PLRC*-8 is much higher than PRM*. Figure 5 shows path
obtained from PLRC*-8.

6685

(6) Reeds-Shepp Car path obtained from PRM* (blue, path
cost 5.77792) and PLRC* (red, path cost 5.69049)

C. Reeds-Shepp Car

We tested the algorithm on a Reeds-Shepp car [19] with
obstacles which is showed in Figure 6. The second row of
Table II shows the comparison results of Reeds-Shepp car
from PRM* and PLRC*-8, where the memory cost of PRM*
is 7 times of PLRC*-8 while the path accuracy of PLRC*-8
is higher than PRM*.

D. Comparison to spanner algorithms

As a memory-efficient representation for motion planning,
spanners can also save much space compared to traditional
roadmaps, while returning good quality paths [15, 13, 22].
However, one of the major differences is that the spanners
are sub-graphs of the roadmaps, though some approaches are
online and never store the complete roadmap graph [22].

In a direct comparison based on our own prior published
work, the spanner algorithm presented in [22] (WSS) on
average retains 20 to 30% of the edges needed by PRM∗. The
number of edges retained can drop to around 10% or even
lower if a large enough stretch for the spanner is provided.
At the same time, the average path quality for the WSS is
10 to 20% worse than that of PRM∗, due to the loss of
edges. The quality of paths does not change much even for
a significantly large stretch. One advantage of the WSS is
its runtime, which is 50 to 70% faster compared to PRM∗,
as many collision detections are not needed for the edges
discarded by WSS online.

In conclusion, the WSS spanner algorithm, though faster,
retains usually 10 times the data needed compared to the
regression-based approach, and still outputs paths with worse
quality.

V. USE CASE: HIGH MEMORY COST CELL PLANNERS

One key advantage of using the regression complex ap-
proach is its ability to process the configuration space Q
on a cell by cell basis, avoiding the need to store each
cell planner for the entire complex. Once a cell C has its
all-pairs distance information summarized via the regressor
RC and classifier KC , all information specific to that cell

planner can be discarded. Consider an instance of a motion
planning problem where a PRM* is used as the cell planner.
If PRM* must be used across the entire space, the entire
roadmap must be maintained and searched across. With a
regression complex, a PRM* is constructed in each cell,
which is then summarized and discarded. When a query
is run on the regression complex, cells for which the cell
planner is required (see subsection III-C) can reconstruct
the PRM* in that cell alone. Figure 7 depicts the regression
complex run on a maze with a PRM* cell planner. Note that
although Figure 7 shows PRM*s for each cell was relevant
to the query, there is no need to keep more than one cell’s
cell planner in memory at any given time – once the path
is found, the cell planner may be discarded. This approach
allows motion planning for problems where planning over the
entire configuration space requires too much memory to be
computationally feasible. In the example shown by Figure 7,
the regression complex had a maximum memory usage of
163,200 floating points, whereas a PRM* of equivalent path
quality required a maximum memory usage of 460,000
floating points.

(7) Reconstructed cell planners for a regression complex
on for a problem with an intricate configuration space.

VI. PLRC* ASYMPTOTIC COMPLETENESS AND
OPTIMALITY

The following proofs refer to a PLRC* is used to solve a
motion planning problem (Q, qs, qt) with a robust solution
σ∗ ∶ [0,1] ↦ Qf with strong δ-clearance.

Let C denote the complex of regression cells generated
by the PLRC*. Let Gb = (Vb,Eb,wb) be the query graph
described in subsubsection III-C.1. Assume that each cell
C ∈ C uses PLR with minimum cell edge size ε as regressor
and classifier, and that boundary samples are placed in a grid
with step size εs.

Because the cells in C cover all of Q, any path between
configurations must trivially cross the boundaries of C. We
can define these crossing points as the values b1, . . . , bn of

6686

σ∗ which corresponds to a path πb = (σ∗(b1), . . . , σ∗(bn))
such that each σ∗(bi) ∈ B(C).

Lemma 1 (Convergence of boundary graph accuracy):
Let π∗ denote the shortest path from qs to qt on boundary
graph Gb. As ε → 0 and εs → 0, the distance between each
configuration π∗[i] and πb[i] approaches 0.

Proof: Because the boundary sampling method samples
cells with a sampling width of εs, any configuration q ∈
B(C) is at most dim ∗ εs away from a sample qV , where
dim is the dimensionality of the C-space Q. Thus as εs →
0, the distance from q to the nearest configuration qV ∈ V
approaches 0. To show that the nearest qV is on the path
π∗, we show that the edge weights wb match the distance
function d at the limit of ε.

Given a value function V (⋅) with Lipschitz continu-
ity factor κ, we know from Theorem 2 of [17] that for
the approximation L(⋅) from the PLR, ∣V (q) − L(q)∣ ≤
5
2
κε

√
n ∀q ∈ Q. Consider the regression RC over the all

pairs distance function d, which PLRC* uses to calculate
the graph weights wb. By the inequality above, as ε →
0, ∣RC(q1, q2) − d(q1, q2)∣ → 0 as long as q1 and q2 are
correctly classified. The accuracy of KC with respect to the
connectivity function converges to 0 by the same argument.

Because wb is a good approximate of d in the limit of ε and
π∗ is the shortest path on G, we know that if configurations
are sampled close to each boundary waypoints q, the nearest
configuration qV ∈ V must be on π∗. Therefore as ε→ 0 and
εs → 0, the distance between each configuration π∗[i] and
πb[i] approaches 0. ∎

Theorem 1 (Resolution completeness of LPRC*):
LPRC* is resolution complete with respect to ε and εs.

Proof: Let σ denote the path produced by PLRC*. σ is
constructed from the waypoints in π∗ using the cell planner
between each consecutive pair of configurations (qi, qi+1) on
the path πb. By lemma 1, as ε → 0 and εs → 0, a shortest
path πb on Gb must exist connecting qs to qt. Because the
cell planner PRM* is guaranteed to return a feasible path at
high enough resolution, σ must be feasible as long as each
consecutive pair of configurations (qi, qi+1) is connectable.
The feasibility of the path between each (qi, qi+1) depends
on the error KC , which as argued above, converges to 0 as
ε → 0. Thus as ε and εs approach 0, PLRC* is guaranteed
to return a feasible solution. ∎

Theorem 2 (Asymptotic optimality of PLRC*): RCRM is
asymptotically optimal with respect to ε and εs.

Proof: Again, let σ denote the path produced by
PLRC*. By Theorem 1, we know that the solution σ is
feasible, and by lemma 1 the distance between corresponding
boundary configurations π∗[i] and πb[i] approaches 0. Given
a sufficiently dense PRM*, the path returned by the cell
planner is the optimal path between each waypoint on πb.
Since each configuration on πb is arbitrarily close to π∗, the
error of total path length converges to 0 with ε and εs.

VII. FUTURE WORK

The primary contribution of this work is the notion of
using spatial decomposition and regressions to construct a

hybrid representation of a search space. We compared the
performance of the approach against PRM* in various search
spaces and provide a model-agnostic algorithm for regressing
distances in search spaces for motion planning. We have
tested alternative regression techniques, like XGBoost and
neural networks, but not deeply.

Computing all-pairs distance using a dense PRM* and
repeatedly running A* search is not an elegant approach.
Although the regression complex can avoid constructing a
dense graph for the entire search space since it only needs
roadmaps in local cells, there is still a lot of computation that
goes into constructing these local roadmaps. Setting the limit
on the density of the PRM* is also unclear; denser roadmaps
provide more optimal paths, but at the cost of construction
time and memory. Our experiments navigated this tradeoff
through trial and error, and finding the optimal limits on
PRM construction will require further experimentation.

Similarly, the computational costs of refinement are sig-
nificant and may pose a limit on the practical applications
of this work. As mentioned in subsection I-B, alternative
approaches using smooth approximations during the query
phase like that employed by Field D* [10] might be used to
reduce the costs of our preliminary approach.

REFERENCES

[1] Devin Balkcom, Ajay Kannan, Yu-Han Lyu, Weifu
Wang, and Yinan Zhang. “Metric cells: Towards
complete search for optimal trajectories”. In: 2015
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE. 2015, pp. 4941–
4948.

[2] Jérôme Barraquand and Jean-Claude Latombe. “Non-
holonomic multibody mobile robots: Controllability
and motion planning in the presence of obstacles”. In:
International Conference on Robotics and Automation.
Sacramento, CA, 1991, pp. 2328–2335.

[3] Mukunda Bharatheesha, Wouter Caarls, Wouter Jan
Wolfslag, and Martijn Wisse. “Distance metric ap-
proximation for state-space RRTs using supervised
learning”. In: 2014, pp. 252–257.

[4] Joshua Bialkowski, Sertac Karaman, Michael W. Otte,
and Emilio Frazzoli. “Efficient Collision Checking in
Sampling-Based Motion Planning”. In: 2012, pp. 365–
380.

[5] Tianqi Chen and Carlos Guestrin. “Xgboost: A scal-
able tree boosting system”. In: Proceedings of the
22nd acm sigkdd international conference on knowl-
edge discovery and data mining. ACM. 2016, pp. 785–
794.

[6] Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser,
Lydia Tapia, and Aleksandra Faust. “RL-RRT: Kin-
odynamic Motion Planning via Learning Reach-
ability Estimators from RL Policies”. In: CoRR
abs/1907.04799 (2019).

[7] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu.
“A Survey on Network Embedding”. In: CoRR
abs/1711.08752 (2017).

6687

[8] Robin Deits and Russ Tedrake. “Computing Large
Convex Regions of Obstacle-Free Space through
Semidefinite Programming”. In: Workshop on the Al-
gorithmic Foundations of Robotics (WAFR). Istanbul,
Turkey, Aug. 2014.

[9] Aleksandra Faust, Kenneth Oslund, Oscar Ramirez,
Anthony Francis, Lydia Tapia, Marek Fiser, and James
Davidson. “PRM-RL: Long-range Robotic Navigation
Tasks by Combining Reinforcement Learning and
Sampling-Based Planning”. In: 2018 IEEE Interna-
tional Conference on Robotics and Automation, ICRA
2018, Brisbane, Australia, May 21-25, 2018. IEEE,
2018, pp. 5113–5120.

[10] David Ferguson and Anthony (Tony) Stentz. The Field
D* Algorithm for Improved Path Planning and Re-
planning in Uniform and Non-Uniform Cost Environ-
ments. Tech. rep. CMU-RI-TR-05-19. Pittsburgh, PA:
Carnegie Mellon University, June 2005.

[11] Sertac Karaman and Emilio Frazzoli. “Sampling-based
Algorithms for Optimal Motion Planning”. In: The
International Journal of Robotics Research 30(7),
846-894 (2011).

[12] Lydia Kavraki, Petr Svestka, Jean-Claude Latombe,
and Mark Overmars. “Probabilistic Roadmaps for Path
Planning in High-Dimensional Configuration Spaces”.
In: IEEE International Conference on Robotics and
Automation. 1996, pp. 566–580.

[13] Anthanasios Krontiis, Andrew Dobson, and Kostas
Bekris. “Sparse roadmap spanners”. In: Proceedings
of the workshop on the algorithmic foundations of
robotics on Robotics, WAFR 2012 (2012).

[14] Tomás Lozano-Pérez and Michael A. Wesley. “An
Algorithm for Planning Collision-free Paths Among
Polyhedral Obstacles”. In: Commun. ACM 22.10 (Oct.
1979), pp. 560–570. ISSN: 0001-0782. DOI: 10 .
1145/359156.359164. URL: http://doi.
acm.org/10.1145/359156.359164.

[15] James D. Marble and Kostas E. Bekris. “Asymp-
totically Near-Optimal Planning With Probabilis-
tic Roadmap Spanners”. In: IEEE Transactions on
Robotics 29.2 (2013), pp. 432–444.

[16] Rémi Munos, Leemon C. Baird, and Andrew W.
Moore. “Gradient descent approaches to neural-net-
based solutions of the Hamilton-Jacobi-Bellman equa-
tion”. In: IJCNN. 1999.

[17] Josiah Putman, Lisa Oh, Luyang Zhao, Evan Hon-
nold, Galen Brown, Weifu Wang, and Devin Balk-
com. “Piecewise linear regressions for approximating
distance metrics”. In: arXiv (2020).

[18] D. Chris Rayner, Michael H. Bowling, and Nathan R.
Sturtevant. “Euclidean Heuristic Optimization”. In:
Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11, 2011. 2011.

[19] J. A. Reeds and L. A. Shepp. “Optimal paths for a car
that goes both forwards and backwards.” In: Pacific
J. Math. 145.2 (1990), pp. 367–393. URL: https:

//projecteuclid.org:443/euclid.pjm/
1102645450.

[20] T. Siméon, J.-P. Laumond, and C. Nissoux. “Visibility-
based probabilistic roadmaps for motion planning”. In:
Advanced Robotics 14.6 (2000), pp. 477–493.

[21] Russ Tedrake, Ian R. Manchester, Mark M. Tobenkin,
and John W. Roberts. “LQR-trees: Feedback Motion
Planning via Sums-of-Squares Verification”. In: I. J.
Robotics Res. 29.8 (2010), pp. 1038–1052.

[22] Weifu Wang, Devin J. Balkcom, and Amit
Chakrabarti. “A fast online spanner for roadmap
construction”. In: I. J. Robotics Res. 34.11
(2015), pp. 1418–1432. DOI: 10 . 1177 /
0278364915576491. URL: https : / / doi .
org/10.1177/0278364915576491.

6688

View publication stats

https://www.researchgate.net/publication/345260649

