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Abstract— Traditional swarm robots rely on specific com-
munication and planning strategies to coordinate particular
tasks. Human swarms exhibit distinctive characteristics due to
their capacity for language-based communication and active
reasoning. This paper presents an exploratory approach to
robotic swarm intelligence that leverages Large Language
Models (LLMs) to emulate human-like active problem-solving
behaviors. We introduce a decentralized multi-robot system
where each robot initially only has its local information and
does not know others’ existence. The robots utilize LLMs for
reasoning and natural language for inter-robot communication,
enabling them to discover peers, share information, and coordi-
nate actions dynamically. In a series of experiments in zero-shot
settings, we observed human-like social behaviors, including
mutual discovery, identification, information exchange, collab-
oration, negotiation, and error correction. While the technical
approach is straightforward, the main contribution lies in
exploring the interactive societies that LLM-driven robots form
– a form of “robot anthropology” that examines emergent
collaborative structures.

Index Terms— Swarm Robotics, Swarm Intelligence, Large
Language Model, Artificial Intelligence, Robot Anthropology,
AI-Enabled Robotics, Multi-Robot Systems

I. INTRODUCTION

In nature, ants collaborate to transport food and follow
the trails of their predecessors [1]; fish schools collectively
evade predators [2]; birds form specific formations during
flight [3]; sheep exhibit synchronized movement patterns [4];
and wolves and hunting dogs demonstrate even more sophis-
ticated patterns of collective intelligence during hunting [5].
Such inherent, passive swarm intelligence inherently limits
complex information exchange [6], [7]. Human collective
intelligence relies heavily on spoken and written communi-
cation. This capability for communication enables humans to
collaborate on complex tasks that may not be predefined. [8],
[9] Due to their inherent complexity, such tasks often exceed
the capabilities of a single individual, necessitating collective
effort [10]. Humans actively identify problems, analyze situ-
ations, organize groups, and collaborate to achieve solutions.

Large Language Models (LLMs) offer a transformative
opportunity to enhance swarm robotics by endowing robots
with more human-like social intelligence. Our architecture is
shown in Fig. 1.

This paper explores a decentralized paradigm where
robots, each driven by an independent LLM, spontaneously

Fig. 1. System architecture overview showing the interaction between
robots in the virtual environment, the proxy middleware that manages
communication with LLM APIs, and the context management system. Each
robot maintains an independent session that enables isolated reasoning and
inter-robot communication.

discover peers, establish communication through natural lan-
guage, and self-organize collaborative behaviors without pre-
programmed relationships. The primary contribution of this
work is the investigation of emergent social dynamics in such
LLM-driven swarms — a form of “robot anthropology.” In
experiments encompassing formation control and cooperative
object transportation, we observed spontaneous peer discov-
ery, dynamic negotiation, error correction, and other complex
social interactions.

Our key contributions include (1) a fundamentally dif-
ferent paradigm for swarm robot control devoid of pre-
knowledge of peers and tasks, (2) experiments to analyze
emergent social behaviors, and (3) a comprehensive analysis
of task-adaptive communication patterns and baseline assess-
ment of LLM capabilities in our application.

These findings demonstrate the feasibility of human-
inspired active swarm intelligence and represent a step
towards more adaptable, language-driven robotic systems
capable of emergent, cooperative problem-solving.

II. RELATED WORK

A. Traditional Swarm Robotics Approaches

In the field of swarm robotics, traditional approaches,
including formation control [11], flocking algorithms [12],
consensus-based approaches [13], and bio-inspired swarm
algorithms [14], have shown effectiveness in predictable
environments. However, relying on predefined behavioral
patterns, these methods often lack adaptability and flexi-
bility when facing open-ended tasks [15], [16]. Zhou and



Tokekar examined multi-robot coordination in uncertain en-
vironments, focusing on algorithmic planning approaches for
adaptive decision-making, yet still within structured frame-
works [17]. Similarly, Gielis et al. provided a critical analy-
sis of communication mechanisms in multi-robot systems,
emphasizing the need for efficient information exchange
protocols while highlighting the limitations of conventional
methods [18]. Building on these challenges, Korsah et al.
developed a comprehensive taxonomy for multi-robot task
allocation that maps robotic challenges to established math-
ematical optimization models, offering systematic classifica-
tion but still within traditional paradigms [19]. In the classic
paradigms, [20] and [21] highly rely on human control,
while some automation algorithms appeared in the inter-
robot collaboration in [22] and [23], but still unable to self
drive to accomplish the tasks.

B. AI-Driven Agents

Our approach differs from recent LLM-based game agents.
While frameworks like ALYMPICS [24], LLM agent so-
cieties in Avalon [25], LARP for role-playing [26], and
other game agents across various genres [27] demonstrate
impressive strategic decision-making and social behaviors,
they operate within predefined rules and structured scenarios.
In contrast, our system creates an open-ended environment
where robots organically develop collaboration strategies that
demonstrate deliberate communication and logical deduction
that more closely resembles human problem-solving.

C. LLM Applications in Robotics

Recent breakthroughs in LLMs have opened new possibil-
ities in robot control. LLM2Swarm pioneered the integration
of LLMs into robot swarms through two approaches: indirect
integration for controller synthesis and validation and direct
integration deploying local LLM instances on each robot
for collaboration and human-robot interaction [28]. While
this work demonstrated LLM’s potential in reasoning, plan-
ning, and collaboration, it primarily utilized LLMs as task
planners and controllers within predetermined collaboration
patterns. Li et al. systematically compared different LLM-
based communication frameworks (DMAS, CMAS, HMAS-
1, HMAS-2) in multi-robot systems, focusing on system
scalability and task success rates [29]. Lykov and Tset-
serukou developed LLM-BRAIn, a transformer-based LLM
fine-tuned to generate adaptive robot behaviors via behavior
trees (BTs), trained on 8.5k GPT-3.5 demonstrations and
performs comparably to human-created BTs [30]. Liu et
al. proposed a Human-Robot Collaboration (HRC) approach
using GPT-4 and YOLO-based perception to enhance LLM-
based robotics, enabling complex task execution through
human-guided learning and motion planning [31]. Wang et
al. addressed LLMs’ limitations in embodied robot tasks by
proposing a multimodal GPT-4V framework that integrates
language and visual inputs, enhancing robot performance and
advancing Human-Robot-Environment interaction [32].

Table I highlights key differences between our approach
and representative works. Bio-inspired methods [12], [14]

TABLE I
COMPARISON WITH REPRESENTATIVE WORKS

Feature Bio-inspired
[12], [14]

LLM-based
[28], [29]

Our
Approach

Robot
Discovery

Typically pre-
defined

Often
predetermined

Spontaneous

Language
Use

Minimal/
Symbolic

Task-specific Open-ended

Task Adapta-
tion

Fixed
algorithms

Requires spe-
cific prompts

Generic
prompts

Social
Dynamics

Rule-based Structured Emergent

Note: Evaluations reflect trends in cited works and may not represent all
implementations.

typically rely on predetermined relationships with limited
communication, while recent LLM-based approaches [28],
[29] introduce language capabilities but generally within
structured interaction frameworks. In contrast, our approach
enables spontaneous social interaction, where robots initially
have no knowledge of others’ existence and must actively
discover peers, establish communication, and self-organize.

III. PROBLEM FORMULATION

A. System Design and Implementation

Our system is implemented in a simple virtual envi-
ronment written in Python with OpenCV visualization. To
isolate and study the phenomena of language-based social
coordination, which is our primary research focus, we de-
liberately simplified physical properties such as collision
detection. We developed a proxy middleware to unify the
management of all communications with various LLM APIs,
handle context management, and perform logging. This
proxy middleware does not change the distributed nature of
the agent decision-making system.

The proxy processes: (a) sending prompts or conversations
from robots to the LLM; (b) receiving generated responses
from the LLM and parsing to robot commands; and (c) man-
aging context for each robot session to record logs, as shown
in Fig. 1. Using this middleware rather than integrating these
functions into the robot simulator reduces complexity and
decouples the code while making it convenient to switch
between different AI models.

When a robot connects to the proxy, the proxy creates an
independent session for that robot. Each robot in the virtual
environment maintains its independent context, isolated from
other robots. All communication and context operations for
a robot occur within its corresponding session, and the proxy
records the context in real-time to files associated with that
session. Robots and humans can broadcast messages within
the virtual environment, which are received by other robots
and processed by their respective LLMs, enabling inter-robot
communication.

B. Experimental Design

We demonstrate the spontaneous communication and col-
laboration capabilities of our system through eight tasks, as
shown in Fig. 2, which can be classified into two categories.
For Tasks 1-5, we focus on exploring formation control



and geometric reasoning, where robots must communicate,
exchange positional information, and reason about spatial
relationships to achieve structured formations, such as align-
ment, triangles, and circles. Tasks 6-8 focus on cooperative
object transportation, where robots must coordinate their
roles, negotiate task allocation, and execute clever and assis-
tive transportation of objects. Specifically, Task 8 highlights
sequential task execution and coordination, where robots
must relay objects within a constrained movement range,
demonstrating adaptive teamwork and stepwise collabora-
tion.

• Task 1 – Mutual Face-to-face Alignment: Two ran-
domly placed robots must face each other, requiring
them to discover each other’s presence, inquire about
positions, and reason about necessary rotations.

• Task 2 – Robots Alignment: Four robots randomly
placed along the y ( evenly distributed on the x for better
visualization in the experiments) must align on the same
y-value, demonstrating multi-agent discovery, position
information exchange, goal position negotiation, and
task completion verification.

• Task 3 – Equilateral Triangle Formation: Three
robots must form an equilateral triangle, testing geo-
metric reasoning capabilities.

• Task 4 – More Complex Triangle Formation: Four
robots must organize into a triangle formation, with
one robot necessarily positioned along an edge, testing
autonomous coordination when perfect symmetry is
impossible.

• Task 5 – Circle Formation: Six robots must form a
circle, challenging the task with more robots involved
than any of the other tasks.

• Task 6 – Single Object Transportation: Two robots
and one object are placed in the environment, with the
task of moving the object (which requires only one robot
to transport) to a target location. Thus, this tests efficient
task allocation when only one robot needs to complete
the task.

• Task 7 – Dual Object Transportation: Similar to Task
6, but with two objects instead of one, thus increasing
the number of possible robot-object pairings.

• Task 8 – Relay Transportation: Three robots with
restricted movement ranges must coordinate to transport
one object, which can be carried by one robot at a time,
to a target location. Because of the range restriction, the
robots must relay the objects to one another.

We expect traditional swarm robotics methods would
require separate algorithms for each demo, with additional
coding needed for more complex requirements. Our LLM-
based approach represents a more adaptive solution without
task-specific programming.

C. LLM Setup

We mainly experimented with GPT-4o-2024-11-20, which
provided the best results on our preliminary experiments, but
we also tested how other readily available LLMs perform to
evaluate generalization to other LLMs. The tests share the

TABLE II
SUCCESS COUNTS (OUT OF 10 TRIALS) FOR LLMS ON EXPERIMENTAL

TASKS.

Model T1 T2 T3 T4 T5 T6 T7 T8
GPT-4o 6 8 6 4 1 7 5 1
Gemini-2.0-Flash 5 8 5 0 0 7 3 1
DeepSeek-V3 4 1 2 0 0 2 1 0

same prompt, and the temperature is set to 0.7. For standard-
ized control command output, we employed GPT-4o-mini
as a formatting tool, using its JSON output capabilities but
without using it for any of the reasoning tasks.

We ran 10 trials on GPT-4o-2024-11-20, DeepSeek-V3,
and Gemini-2.0-Flash-001 for each experiment. We define
failure conditions as when the robots cease to generate any
new communication interactions or fail to correctly complete
the task within a specified time window. Tasks 1-7 have 10
minutes of timeout, while Task 8 has 15 minutes of timeout,
given its additional complexity. The success attempts were
recorded in Table II. The detailed logs, recordings, and data
can be accessed in the supplementary materials.

IV. OBSERVATION AND CHALLENGES

A. Results and Analysis

As shown in Table II, GPT-4o achieved the highest success
rates across all eight tasks, with a particularly strong perfor-
mance in Task 2 (Robot Alignment, 8/10) and Task 6 (Single
Object Transportation, 7/10). Gemini-2.0-Flash demonstrated
comparable results on simpler tasks but struggled with more
complex geometric reasoning in Tasks 4 and 5. DeepSeek-
V3 showed significantly lower success rates across all ex-
periments, even when given 5x time limits.

Beyond the three main LLMs in our experiment, we
conducted limited tests with several other models. Grok-2
and Claude-3.7-Sonnet successfully completed at least a few
tasks, but API request limitations prevented comprehensive
testing across all experimental scenarios. Claude-3.5-Sonnet
exhibited severe hallucination tendencies, frequently generat-
ing irrelevant messages, inventing non-existent information,
or prematurely declaring successful completion of tasks.
GPT-4o-mini demonstrated extremely limited context reten-
tion, often forgetting critical information after just 3-4 ex-
changes and also frequently generating repeated meaningless
text. These observations indicate that effective multi-robot
coordination through natural language using the approach we
took may require substantial reasoning capacity and context
management capabilities that appear to be available only in
larger, more advanced LLMs.

Analysis of failure cases revealed several common pat-
terns. In unsuccessful trials, robots frequently misinterpreted
their objectives or made critical errors in mathematical calcu-
lations when determining formation coordinates. For exam-
ple, DeepSeek-V3 always misunderstood the requirement of
uniform distribution in Task 5, so that robots reach the circle
but are not spread evenly. All LLMs frequently calculate the
orientation wrong, which causes them not to head to the



Fig. 2. Illustration of the eight experimental scenarios: Tasks 1-5 explore formation control and geometric reasoning (mutual alignment, robot alignment,
equilateral triangle, complex triangle, and circle formations), while Tasks 6-8 demonstrate cooperative object transportation (single object, dual object, and
relay transportation).

target destination, but this type of error is recoverable. All
LLMs may also generate commands that do not follow the
rules stated in the system prompt, which causes silence (i.e.,
no communication exchange) between robots and consequent
inaction, leading to eventual failure.

Tasks requiring precise geometric reasoning with multiple
agents (Tasks 4, 5) or sequential coordination (Task 8) proved
the most challenging. The circle formation task (Task 5) was
particularly difficult, with only one successful completion
using GPT-4o. This suggests that as the number of robots
increases, the dimensional complexity of spatial reasoning
and communication grows non-linearly, exceeding the cur-
rent capabilities of most LLMs.

B. Communication Pattern Analysis

Analysis of communication patterns in successful task ex-
ecutions reveals distinct interaction strategies across different
task types.

Tasks 1 to 8 required an average of 8, 11.75, 5.67, 8, 7.5,
11.5, 15.5, and 14.33 communications to complete.

We classified robot communications into eight categories:
Status Report (reporting current position, status, or progress),
Query (requesting information or confirmation), Plan An-

nouncement (declaring intentions or plans), Coordination
(organizing or directing other robots), Help Request (ex-
plicitly asking for assistance), Help Offer (providing help
or solutions), Acknowledgment (confirming information or
task completion), and Other (human instruction or commu-
nications not fitting previous categories). We utilized GPT-4o
to label each message in all the conversations. As shown in
Fig. 3, while our system prompts note they can collaborate,
the prompt does not indicate that the robots should use any
dictated communication structures or patterns.

Status Reports dominated across all tasks (38-56% of
messages), with robots regularly sharing position and state
information. The highest proportion appeared in Task 2
(56%), where accurate alignment requirements apparently
led to frequent position updates. The formation tasks gen-
erally showed higher rates of Status Reports compared
to transportation tasks, reflecting the continuous positional
adjustments needed for geometric arrangements.

Task-specific communication patterns emerged clearly in
our data. Formation tasks (1-5) showed minimal Help Re-
quests (0%) but substantial Acknowledgments (up to 30% in
Task 5), indicating a coordination-focused approach where
consensus building was critical. In contrast, transportation



Fig. 3. Distribution of communication message types across the eight experimental tasks successes with GPT-4o-2024-11-20. The chart shows how
communication patterns appear in relation to the task requirements.

tasks (6-8) exhibited more Help Requests (6-9%) and re-
duced Acknowledgments (2-11%), perhaps reflecting a more
direct problem-solving approach when physical manipulation
was required.

Query messages showed task-dependent patterns, with the
highest proportions in Task 1 (30%) and Task 8 (23%).
This reflects the information-gathering requirements of these
specific scenarios – mutual discovery in Task 1 and complex
relay coordination in Task 8. The high proportion of Co-
ordination messages in Task 8 (26%) further demonstrates
how communication adapts to sequential dependency re-
quirements.

Examining the ratio between information sharing (Sta-
tus Reports + Queries) and coordination messages (Plan
Announcements + Coordination) reveals a task-dependent
evolution:

• Simple discovery (Task 1): 92.9% vs. 7.0%
• Intermediate formation (Tasks 2-4): ∼66% vs. ∼19%
• Complex formation (Task 5): 49.8% vs. 19.6%
• Transportation tasks (6-7): ∼66% vs. ∼17%
• Sequential transportation (Task 8): 55.8% vs. 28.3%
This progression shows how robots naturally shift from

information-heavy to coordination-heavy communication as
task complexity increases, particularly when sequential de-
pendencies are involved. Task 8 (relay transportation) ex-
hibited both high Coordination (26.1%) and Query (23.2%)
rates, directly reflecting the sequential dependencies required
in relay operations. These proportions significantly exceed
those in simpler tasks, demonstrating how communication
naturally adapts to coordination complexity.

Formation tasks (1-5) and transportation tasks (6-8) ex-
hibited substantially different communication distributions.
Most notably, Help Requests and Help Offers (combined
0% in formation tasks) emerged as significant compo-
nents in transportation tasks (7-11%), reflecting the physical
interdependencies inherent in manipulation tasks. Task 1
showed the highest proportion of Queries (36.6% of mean-
ingful messages) and no Acknowledgments (0%), revealing
a discovery-focused communication strategy. In contrast,
Task 5 (circle formation) showed the highest proportion of
Acknowledgments (30.6%), reflecting the increased need for
confirmation in complex spatial arrangements.

C. Emergent Social Behaviors

In our experiments with LLM-driven robot swarms, we
observed several social behaviors that emerged naturally
through multi-agent interactions. While LLMs inherently
possess conversational abilities, these observed behaviors
manifest uniquely in multi-robot environments and cannot
exist in single-agent scenarios. The behaviors we describe
below emerge from the robots’ ability to reason about other
robots’ states, intentions, and needs. This capability funda-
mentally distinguishes our approach from both traditional
swarm robotics methods and single-agent LLM applications.

1) Collaborative Mathematical Optimization: In multiple
trials, robots autonomously performed mathematical reason-
ing to optimize group behavior. For example, in one trial
of Task 2, shown in Fig. 4(a), when tasked with aligning
to a common y-value, the robots shared their positions and
calculated the optimal alignment target.



Fig. 4. Showcase of emergent social behaviors, extract from a trial in Tasks 2, 8, 6, 4, and 7. (sessions 2779, 2964, 2908, 2839, and 2934).

2) Adaptive Resource-Constrained Coordination: When
faced with boundary constraints that prevented direct task
completion, robots spontaneously devised handoff strategies.
In Session 2964, shown in Fig. 4(b), a robot recognized its
inability to complete the task alone.

This coordination emerged without pre-programmed hand-
off protocols, demonstrating the robots’ ability to decompose
problems based on individual constraints, a capability not
typically seen in traditional swarm systems.

3) Personalized Assistance Behaviors: We observed in-
stances where robots provided detailed guidance to help
others overcome difficulties. In Session 2908, shown in
Fig. 4(c), when one robot encountered boundary constraints.

This teaching-like behavior demonstrates knowledge shar-
ing and assistance not typically observed in traditional swarm
approaches.

4) Team Efficiency Meta-Reasoning: In several trials,
robots demonstrated meta-reasoning about optimal team
composition. Session 2839, shown in Fig. 4(d), provides an
example where a robot voluntarily removed itself.

This self-reflective optimization represents a sophisticated
social awareness absent in traditional swarm approaches,
which typically utilize all available units regardless of op-
timal team size.

5) Predictive Conflict Management: Robots demonstrated
the ability to detect and resolve potential conflicts before
they occurred. In Session 2934, shown in Fig. 4(e), when
two robots targeted the same position.

This proactive conflict detection based on awareness of
others’ declared intentions rather than physical collisions
demonstrates predictive social coordination that extends be-
yond reactive collision avoidance typically employed in
traditional swarm robotics.

D. Critical Failure Modes

We selectively choose to analyze several significant failure
modes specific to our LLM-driven robot swarms. We can
learn from it and figure out the cause of failure. These
patterns reveal fundamental research challenges at the in-
tersection of language models and multi-robot systems.

Fig. 5. Showcase of critical failure modes, extract from Tasks 1, 1, and 6
(sessions 3276, 3011, and 3166).

1) Object State Tracking Inconsistency: LLM-driven
robots demonstrated difficulty maintaining consistent ob-
ject tracking after interactions. In Session 3276, shown in
Fig. 5(a), robots lost track of an object after dropping it.

Unlike traditional robotic systems with explicit object
state representations, LLM-driven systems rely on natural
language state updates, which are vulnerable to information
loss during extended interactions.

2) Communication Loop Entrapment: In several trials,
robots became trapped in circular communication patterns
without task progress. Session 3011, shown in Fig. 5(b),
demonstrates this phenomenon.

This pattern persisted for dozens of exchanges without
progress. The social communication patterns generated by
LLMs, while impressively human-like, can lead to inefficient
coordination compared to more direct protocols used in
traditional approaches.

3) Geometric Reasoning Failures: LLM-driven robots
frequently exhibited significant errors in spatial reasoning
and geometric calculations. In Session 3116, shown in
Fig. 5(c), multiple robots calculated incorrect positions for
an equilateral triangle.

Despite multiple correction attempts, the proposed coor-
dinates remained mathematically invalid. This reveals a fun-
damental limitation in LLMs’ ability to perform consistent
mathematical calculations, which is a capability essential for



successful swarm robotics operations.
These failure modes highlight important areas for improve-

ment in LLM-based swarm control. Future implementations
should focus on enhancing world-state modeling consistency,
developing structured communication protocols to prevent
circular patterns, and incorporating validation mechanisms
for mathematical calculations.

E. Response Time and Performance Analysis

Beyond task execution failures themselves, a significant
challenge in our experiments involved LLM API reliability.
In a multi-robot environment, API requests that are exces-
sively delayed or failed cannot simply be retried, as the
interaction context evolves continuously. Despite implement-
ing delay mechanisms and timeout parameters to mitigate
these issues, they remained a notable concern throughout our
experiments. We observed that certain task failures stemmed
not from inherent LLM reasoning limitations but from API
instability.

Identifying and isolating these API-related failures in
batch experiments is challenging. We chose not to manually
filter such failures from our results, as doing so would poten-
tially introduce bias and reduce result fidelity. As our primary
objective was to establish a proof of concept, successfully
executed tasks sufficiently demonstrated the viability of our
approach, with failure cases and success rates providing
supplementary insights.

DeepSeek-V3 exhibited particularly pronounced latency
and API instability during our experiments, with response
times ranging from 5 seconds to several minutes, occa-
sionally returning empty responses. As previously noted,
we implemented extended timeout parameters 5 times for
DeepSeek-V3, but this intervention produced no measur-
able improvement in performance outcomes. Task failures
resulting from communication silence typically occurred well
before timeout thresholds were reached.

Although we provided a comprehensive communication
pattern analysis, we did not report a detailed analysis of
LLM response latency metrics, as they depend on a num-
ber of factors beyond our experimental control, including
Internet connection speed and service queue, and they don’t
affect the fundamental contribution of this work: the novel
paradigm of LLM-enabled swarm robots spontaneously dis-
covering peers, self-organizing, and coordinating task exe-
cution through language-based interaction. We expect that in
the case of actual deployments for multi-robot systems, there
would be a dedicated service with a reliable connection.

F. Discussion and Limitations

Despite interesting results, our approach faces several
significant limitations that suggest future work.

First, LLMs exhibit fundamental weaknesses in consistent
mathematical reasoning, particularly evident in geometric
formation tasks where calculation errors frequently lead to
task failures. The computational demands and API response
latency issues also present practical challenges for real-time
robotic applications. In our experiments, we observed that

API reliability varied considerably between models, with
some requests experiencing delays ranging from seconds to
minutes or failing entirely. These technical limitations signifi-
cantly impacted experimental outcomes but were deliberately
not filtered from our results to maintain data integrity.

Achieving high success rates is not our primary objective
right now. We find there is a large potential to optimize for
task completion. We expect a few-shot strategy and fine-
tuning to be our next approach. We will also figure out the
engineering solution to handle unreliable API calls.

Our current simulation environment also made several
simplifying assumptions, particularly in omitting collision
detection, sensor limitations, and physical constraints. While
useful for initial proof of concept, these simplifications do
not fully represent real-world robotic challenges. Future work
must address physical implementation concerns, including
sensor noise, limited perception, unreliable communication
channels, and physical interaction constraints.

We will also build real robots and experiment in the real
world to investigate inter-robot collaboration further. It would
be even more interesting if we made different heterogeneous
robots that have different functionalities. We can further
investigate how different functional robots collaborate spon-
taneously.

V. CONCLUSION

Our research expands the conceptual boundaries of swarm
robotics by integrating human-like social intelligence capa-
bilities through LLMs. While traditional swarm approaches
excel at specific tasks through pre-programmed behavioral
patterns, they lack generalized problem-solving abilities. Our
decentralized approach, where each robot maintains indepen-
dent reasoning without central control, preserves core swarm
principles while adding dimensions of adaptability through
natural language reasoning. The demonstrated ability of
robots to discover peers, establish communication, and self-
organize for diverse tasks without task-specific programming
represents a qualitative advance in swarm flexibility and
autonomy.

The most significant finding from our experiments is
the emergence of sophisticated social behaviors that re-
semble human collaborative patterns. These include col-
laborative mathematical optimization, where robots collec-
tively reasoned about optimal positioning; adaptive resource-
constrained coordination, where robots devised handoff
strategies based on individual limitations; personalized assis-
tance behaviors, including teaching-like guidance to peers;
team efficiency meta-reasoning with voluntary role adjust-
ments; and predictive conflict management through intention-
based coordination.

Our communication pattern analysis revealed task-specific
adaptations in robot dialogue, with proportions of status
reports, queries, and coordination messages naturally shifting
based on task requirements. As task complexity increased,
particularly in scenarios with sequential dependencies, robots
naturally evolved more coordination-heavy communication
strategies. The stark differences between communication



patterns in formation tasks versus transportation tasks further
demonstrate how LLM-driven robots can adapt their interac-
tion styles to task demands without explicit programming
towards generalized swarm robotics.

SUPPLEMENTARY MATERIALS

All data are open-sourced on GitHub: https://
github.com/cccat6/LLM-Swarm.
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