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Abstract— This paper presents a data structure that
summarizes distances between configurations across a
robot configuration space, using a binary space partition
whose cells contain parameters used for a locally linear
approximation of the distance function. Querying the
data structure is extremely fast, particularly when com-
pared to graph search required for querying Probabilistic
Roadmaps, and memory requirements are promising. The
paper explores the use of the data structure constructed for
a single robot to provide a heuristic for challenging multi-
robot motion planning problems. Potential applications
also include the use of remote computation to analyze the
space of robot motions, which then might be transmitted
on-demand to robots with fewer computational resources.

As greater computational resources become available
through large-scale clusters and cloud computing, the
question arises of how to leverage those resources to
allow fast and effective planning on a remote robot with
far fewer resources. This paper takes one approach to
the problem, finding approximate compressed represen-
tations of optimal motion that can then be stored, trans-
mitted, and used within a tight computational budget. In
particular, the paper discusses how to build and make use
of a cell-based decomposition called a Locally Linear
Distance Map (LLDM), where each cell contains a linear
approximation of the value function.

We are particularly interested in motions that are
optimal with respect to time cost, energy, precision,
sensor coverage, or other objectives. In order to create a
data structure that represents optimal motion, we must
have: a) a method for discovering information about
optimal motion, b) a method for storing that information,
and c) a method for extracting optimal trajectories from
the data structure.

Probabilistic Roadmap (PRM) frameworks provide all
three methods: points are sampled and connected to
analyze motion, and used to create a graph data structure
from which paths may be extracted. The PRM* [11]
algorithm converges to optimal paths in the limit, but
convergence proofs require samples to be placed densely
enough over the space to approximately cover any
potential optimal path. This density can lead to a graph
that is too large to store on disk or transmit over a

Fig. 1: An LLDM approximation of Euclidean distance
to the origin.

network, and the computational cost of the A* search
to find paths grows with the number of samples.

In the present paper, the value function is constructed
primarily to summarize an existing roadmap data struc-
ture. As the computation of the initial roadmap is quite
expensive, a promising direction of future work is the
incremental construction of the LLDM data structure
without an existing graph.

The LLDM data structure may represent the cost to
a single goal, or may summarize an all-pairs distance
function over the space. As an initial demonstration of
the potential usefulness of the very high speed queries,
we make use of the LLDM as a heuristic for informed
search using a traditional cell-based search method by
Barraquand and Latombe [1]. While we do not claim
that the informed search method we present is practically
competitive with modern multi-robot planning methods,
we believe that the high-speed distance function com-
putation may serve as a useful component in future
planning approaches.

The following table shows some comparison the
memory required to store a PRM* data structure for a
simple planar 1x1 world with point robots and polygonal
obstacles, and the memory required to store an LLDM.
One of the LLDM data structures was constructed from
the true value function, computed using a visibility
graph, and the second was constructed from the PRM*
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itself.

TABLE I: PRM-LLDM Comparison

Method Memory (KB) Max Error Avg Error
LLDM (VG) 30.24 0.018 0.007

LLDM (PRM*) 30.24 0.134 0.016
PRM* 4412 1.472 0.024

Consider a toy problem that illustrates the challenges
for PRM*, and the main insight that leads to approxima-
tion approaches. Let there be a point robot restricted to
the box [0, 1] × [0, 1]. For now, assume that the goal
of the robot is always to reach the origin; we will
relax this assumption shortly. Further assume that the
true cost of reaching the origin is Euclidean: d(x, y) =√

x2 + y2. To approximate this cost well, PRM* needs
to place very many samples: for each possible starting
configuration, there must be samples sufficiently close
to an optimal trajectory such that the local planner
can connect samples without deviating too far from the
optimal.

For this toy problem, the analytical distance function
may be computed quickly with high accuracy, and the
formula requires little memory to store. But let us
imagine that d is a black box that may only be queried
at particular points, and will later be unavailable to us.
Let p1 = (0, 0, 0), p2 = (1, 0, 1), and p3 = (1, 1,

√
2),

where the first two elements of each vector give the x
and y location of each point, and the third element gives
the value of the distance function computed at that point.
These three points describe a plane in R3. Given a new
starting configuration (x, y), we may intersect the ver-
tical line through (x, y) with that plane to approximate
the distance function.

Of course, the further we get from the known points,
the greater we expect the error to be. To mitigate this
issue, we divide the space into regions, with a different
linear approximation in each region. We separate the
problem into construction and query phases. To con-
struct the desired data structure, we will use a binary
space partition (BSP) to segment the space into cells.
Within each cell, we construct a linear approximation
of the distance function, by sampling the true distance
function at a few points within or near the cell and
computing parameters that are stored in the portion of
the data structure corresponding to the cell. To query the
approximate distance function at a point, identify the cell
containing the point using the BSP and compute a dot
product with the parameters associated with the cell.

I. RELATED WORK

Perhaps the work closest to that proposed is on learn-
ing heuristics for robot motion planning in games by

Fig. 2: Paths computed for the motion of two robots
using a modified Barraquand and Latombe planner with
LLDM used as heuristic.

Rayner, Bowling, and Sturtevant [20], which attempts to
remap a motion problem with obstacles into a new map
for which the Euclidean distance represents a provably
consistent, admissible heuristic for the original problem.
Network embedding problems similarly try to find a
mapping that expresses distance between vertices in a
network; [8] provides a recent survey.

Work on LQR trees [23] places controllers over the
state space, effectively reducing the memory require-
ments while also achieving safety of motion, providing
a promising data structure to compute and transmit to
robots. Bialkowski et al. have reduced the time cost
of collision detection with RRT*, by building balls in
free (Euclidean) space in which collision detection needs
to be performed only once [5]. Deits et al. showed
a numerical optimization approach to computing large
convex regions, also in a Euclidean space [9]. Early
work on neural network approximations of value func-
tions derived from optimal control includes [18]. Recent
work on distance metric approximation for RRTs using
supervised learning [4] is also quite close in spirit to the
proposed work, and was shown to be quite effective for
finding a policy for a pendulum swing-up problem.

Like the present work, Probabilistic Roadmap (PRM)
algorithms ([12]) algorithms divide motion planning into
learning and query phases. When optimal paths are
sought, as with the PRM* algorithm [11], roadmaps
can become very dense. Marble et al. [16] introduced
spanners [19, 21, 7, 24] into the robotics community
to reduce the density of PRM* roadmaps (at some cost
in path optimality) [14, 17, 13, 15]. In our work [25],
a modified version of more recent streaming spanner
algorithms [10, 2, 3, 22, 6] achieved similar path quality
to the work by Marble in seconds rather than hours. Like
spanner approaches, the present work attempts to find a
summary of a graph data structure, but the summary is
continuous within each cell.
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