LUYANG ZHAO

Phone: <u>603-277-8127</u> Email: luyang.zhao.gr@dartmouth.edu Webpage: <u>https://luyangzhao.github.io</u> LinkedIn: www.linkedin.com/in/luyang-zhao

Research Interest

My current research spans a range of different topics in **Soft robots**, **Modular robots**, **Multi-robot Systems**, **Motion Planning**, **SLAM** and **Machine Learning**.

Education

Dartmouth College

Ph.D. Candidate in Computer Science

- Advisor: Prof. Devin Balkcom
- Honors: Neukom Outstanding Graduate Research Prize

University of Minnesota

- B.S. in Computer Science
 - Research advisor: Prof. Maria Gini
 - Honors: Dean's list

B.A. in Mathematics

- Senior project advisor: Prof. Karel Prikry
- Honors: Dean's list

Research Experience

Design of Soft Modular Robots

Dartmouth College (Advisor: Prof. Devin Balkcom)

• Led the development of **FlexBlocks** and **StarBlocks**, along with various soft modular robotic systems. Focused on designs for autonomous and collaborative tasks, aiming to **integrate modular and soft robotics**. For selected project demonstrations, please refer to the video links provided: <u>Link1</u>, and <u>Link2</u>.

Motion Planning Research

Dartmouth College (Advisor: Prof. Devin Balkcom)

• Conducted research in optimal robot motion strategies, including Bounds Planning and Piecewise Linear Regression Complex. Focused on developing **memory-efficient algorithms** and heuristic approaches for single and multi-robot motion planning.

Undergraduate Research

University of Minnesota (Advisor: Prof. Maria Gini)

• Developed an **assistive AI device** for individuals with memory loss, integrating voice-activated technologies for cognitive support; Designed an **object-finding robot** utilizing SLAM and advanced object detection algorithms for efficient navigation in unknown environments.

Work Experience

Applied Scientist Intern @ Amazon Robotics

Amazon

- Conducted in-depth research and development in the fields of **localization**, **path planning**, and **navigation** for **Amazon's autonomous mobility robots**. This involved identifying and addressing key challenges in robotic movement and efficiency.
- Designed and implemented innovative algorithms tailored to enhance robot performance. These solutions were effectively integrated into the robots' systems using **ROS** and **C++**, demonstrating a significant improvement in their operational capabilities.

Summer Research Intern @ TuSimple Planning

TuSimple

- Developed an advanced **local turn lateral trajectory optimization** for **autonomous trucks**, utilizing a **kinematic tractor-trailer model**. This model enhanced the precision in describing the kinematic behavior during local turns, significantly improving upon the traditional point-mass model.
- Focused on achieving **obstacle avoidance** through the generation of optimized lateral trajectories. Employed **sequential quadratic programming** techniques to effectively minimize a cost function that included state cost, input cost, and jerkiness, while adhering to necessary constraints.
- Successfully implemented and integrated the optimized trajectory solution in a **real-time environment** using **ROS** and **C++**. Demonstrated improved efficiency and safety in autonomous truck maneuvers.

Hanover, NH Sep. 2018–Expected June 2024

Graduated with distinction in 2018

Oct. 2020 - Now

Hanover. NH

Minneapolis, MN

Sep. 2018 - Nov. 2020

Sep. 2016 - May 2018

Minneapolis, MN

Hanover, NH

June 2021 – Sep. 2021 Westborough, Massachusetts

June 2022 – Sep. 2022 San Diego, California

WORKSHOPS ORGANIZED

Tensegrity Robotics Workshop

IROS 2023

- Co-organized the tensegrity robot workshop with Xiaonan (Sean) Huang, Rebecca Kramer-Bottiglio, Kostas Bekris, Devin Balkcom, Joran Booth, Will Johnson, Kun Wang, and Shiyang Lu.
- Presented our work "Untethered Self-Reconfiguring Morphable Modular Robots for Field Deployment", which highlighted new designs in robotic mobility and adaptability in natural, unstructured environments.
- Workshop link: https://www.eng.yale.edu/faboratory/tensegrityworkshop/

MENTORSHIP EXPERIENCE

Lab Mentor

Dartmouth Reality and Robotics Lab

- Master students: Yijia Wu (2021-2022, now PhD student at WPI), Weishu Zhan (2022), Yitao Jiang (2022-now)
- Undergraduate students: Josiah Putman (now in Google), Maxine Perroni-Scharf (now PhD student at MIT)

Teaching Assistant

Dartmouth College

- CS81/281 : Principles of Robot Design and Programming 2018 Fall
- CS76/276 : Artificial Intelligence 2018 Winter, 2019 Fall and 2023 Fall
- CS1 : Introduction to Programming and Computation 2019 Spring and 2020 Spring
- CS50 : Software Design and Implementation 2019 Summer

Teaching Assistant, Summer Computing Academy

University of Minnesota

• Assisted senior high school students in developing programs for Scribbler robots, image processing, video, 3D printing, and other applications.

Honors and Awards

Admissions Ambassador for Dartmouth College(2023-2024) 2nd place in the Neukom Outstanding Graduate Research Prize, \$750 (2023) Undergraduate Research Opportunities Program (UROP) Scholarship, \$1500 (2016) **First prize** in Provincial High School **Mathematics** Competition (2011)

MANUSCRIPTS IN PREPARATION

- [1] "Versatile Variable-Stiffness Modular Robots: Enhanced Design and Adaptive Control for Multifunctional Performance in Varied Aquatic Environments" (In preparation to submit to RA-L in July)
- [2] "Designing Dolphin Dynamics: Integrating Cable-Driven Mechanisms and Tensegrity Structures for Replicating Marine Locomotion" (In preparation to submit to WAFR in May)
- [3] "Unsupervised Reinforcement Learning for Task-Specific Design of Soft Modular Robots" (In preparation to submit to CoRL in May)
- [4] "SeeSea: Multi-modal 3D Perception Dataset of In-water Obstacles for Navigation of Autonomous Surface Vehicles" (In preparation to submit to IJRR in May)
- [5] "Design and Implementation of an Unterhered Underwater Glider Using Syringe-Based Actuation Mechanisms" (In preparation to submit to ICRA in Sep.)

MANUSCRIPTS UNDER REVIEW

[6] Luyang Zhao, Y. Jiang, K. Bekris, and D. Balkcom. FlexBlocks: Shape-Changing Modular Blocks Enable Self-assembling Robotic Structures (Under review in Science Robotics)

Sep. 2018 – Now Hanover, NH

Sep. 2018 – Now

Hanover, NH

June 2017

Minneaplis, MN

October 5, 2023

Room 250C, Huntington Place, Detroit

Publications

- [7] Luyang Zhao, Y. Jiang, D. Balkcom. FlexBlocks: Untethered Self-Reconfiguring Morphable Modular Robots for Field Deployment (Video accepted by ICRA 2024)
- [8] Luyang Zhao, Y. Wu, W. Yan, W. Zhan, X. Huang, J. Booth, A. Mehta, K. Bekris, R. Kramer-Bottiglio, and D. Balkcom. Starblocks: Soft actuated self-connecting blocks for building deformable lattice structures. *IEEE Robotics and Automation Letters*, 8(8):4521–4528, 2023
- [9] Luyang Zhao, Y. Wu, J. Blanchet, M. Perroni-Scharf, X. Huang, J. Booth, R. Kramer-Bottiglio, and D. Balkcom. Soft lattice modules that behave independently and collectively. *IEEE Robotics and Automation Letters*, 7(3):5942–5949, 2022
- [10] Luyang Zhao, J. Putman, W. Wang, and D. J. Balkcom. PLRC*: a piecewise linear regression complex for approximating optimal robot motion. In *International Conference on Intelligent Robots and Systems, IROS 2020*
- [11] J. Putman, L. Oh, Luyang Zhao, E. Honnold, G. Brown, W. Wang, and D. J. Balkcom. Piecewise linear regressions for approximating distance metrics. *CoRR*, abs/2002.12466, 2020
- [12] J. Putman, L. Oh, Luyang Zhao, E. Honnold, G. Brown, W. Wang, and D. J. Balkcom. LLDM: locally linear distance maps for robot motion planning: Extended abstract. In 2019 International Symposium on Multi-Robot and Multi-Agent Systems, MRS 2019
- [13] L. Ferland, Z. Li, S. Sukhani, J. Zheng, Luyang Zhao, and M. L. Gini. Assistive AI for coping with memory loss. In *The Workshops of the The Thirty-Second AAAI Conference on Artificial Intelligence*, 2018, AAAI Workshops

Conference and Seminar Presentations

- [1] "StarBlocks: Soft Actuated Self-Connecting Blocks for Building Deformable Lattice Structures." Presented at RoboSoft 2024.
- [2] "FlexBlocks: Untethered Self-Reconfiguring Morphable Modular Robots for Field Deployment" Presented at ICRA 2023 Tensegrity workshop
- [3] "StarBlocks: Soft Actuated Self-Connecting Blocks for Building Deformable Lattice Structures." Initially presented part of the idea at the ICRA 2022 MSRR Workshop, and at NERC 2022.
- [4] "Soft Modular Robotics: Design and Applications" invited talk at Rutgers university robotics seminar (10/17/2022 10:30am-12:00am)
- [5] "Soft Lattice Modules That Behave Independently and Collectively," Presented at Robosoft 2022
- [6] "PLRC*: a piecewise linear regression complex for approximationg optimal robot motion", Presented at IROS 2020
- [7] "LLDM: locally linear distance maps for robot motion planning", Presented at MRS 2019

REVIEW ACTIVITIES

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE-RAS International Conference on Soft Robotics (RoboSoft) IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)

References

Prof. Devin Balkcom

Professor, Computer Science Dartmouth College

Prof. Kostas Bekris

Professor, Computer Science Rutgers University

Prof. Xiaonan (Sean) Huang

Assistant Professor, Robotics University of Michigan

Prof. Rebecca Kramer-Bottiglio

Associate Professor, Mechanical Engineering & Materials Science Yale University

Email: devin.balkcom@dartmouth.edu

Email: kostas.bekris@cs.rutgers.edu

Email: xiaonanh@umich.edu

Email: rebecca.kramer@yale.edu